Benchmarking Ocean Biogeochemical **Fields in GFDL's ESMs**

Maria Pulido-Velosa Florida International University Mentor/Host: John Krasting

Project objective # 1

The current generation of fully coupled ESMs represent a variety of biogeochemical fields and processes.

Need For Diagnostics

There are relatively few collections of computerized analysis routines aimed at diagnosing these processes in ESMs

How are diagnostics useful to scientists at GFDL?

- Generalized analysis scripts to help see model biases, how the model is behaving and its characteristics.
- Plots can be generated automatically when experiments are run

Determining Biogeochemical Vital Signs

Initial research: What are the key biogeochemical variables in ESMs that should be monitored on a routine basis?

Ocean Topaz Tracers

- <u>Alkalinity</u>
- <u>Dissolved Inorganic Carbon (DIC)</u>
- Phosphate (PO4)
- <u>Nitrate (NO3)</u>
- Silica (SiO4)
- <u>Oxygen (O2)</u>
- Iron (Fe)
- Chlorophyll

Global Data Analysis Project (GLODAP)

World Ocean Atlas (WOA)

Methods

Development of diagnostic tool:

- Regrid World Ocean Atlas (2013) data to the ESM2M model grid
 - FMS "horiz_interp" bilinear interpolation
 - Vertical remapping using ALE -- 102 vertical levels to 50 levels
 - Regridding performed via MIDAS (Matt Harrison)
- Analysis scripts based on common Python packages:
 - netCDF4
 - Numpy
- Makefile available for running and testing the scripts
- Scripts can easily be updated to work with ESM4
 - Variables names similar between TOPAZ and COBALT

Python & Jupyter Notebooks

	SURFACE-COMPARISON .ipynb		C Q Search	1	☆ 自 ♥	
upyte	NUTRIENTS_SURFACE-COMP	ARISON Last Checkpoint: Last Tuesday at 4:	54 PM (autosaved)		الج	
Edit Vi	ew Insert Cell Kernel Widgets	a Help			Python 2 O	
+ % @	16 🛧 🔸 H 🖩 C Code	CellToobar				
		Longitude [/b]				
In [121]:	ModelFile = '/archive/esm2m/f fModel = netCDF4.Dataset(Mod ModelVarName = 'nO3' ModelVar = fModel.variables[M print ModelVar.shape	re/postriga_esm_20100603/ESM2M delFile) odelVarName][:]	/ESM2M-C1_all_historical_	HC1/prod/pp/ocean_topaz_	tracers_month/a	
	ModelVar = ModelVar[0,layidx,:,:] print ModelVar.shape					
	ModelUnits = fModel.variables[ModelVarName].units Model_long_name = fModel.variables[ModelVarName].long_name					
	(1, 50, 200, 360) (200, 360)	10				
	NO3 Topaz 1861-1880				*	
In [122]:	<pre>ci = (ModelVar.min(), ModelVa m6plot.xyplot(ModelVar, lon, suptitle=ModelVarName, title=Model_long_name + clim=ci, centerlabels=T</pre>	r.max()) lat, area=area, ' '+ModelUnits, rue, extend='both')				
	max=5.0181e-05 min=-2.9314e-09	no3 Nitrate mol/kg	mean=6.5723e-06 sd ms=1.0436e-05	=8.1065e-06		
	4 -50 -200	-10 -10 -3 Logical (1)	<u>р</u> 5	0 000048 0 000042 0 000036 0 000030 0 000024 0 000012 0 000012 0 000000		
In [123]:	<pre>futureFile = '/archive/esm2m/ f = netCDF4.Dataset(futureFile</pre>	fre/postriga_esm_20100603/ESM20 e)	M/ESM2M-HC1_2006-2100_all	_rcp85_ZC1/prod/pp/ocean	_topaz_tracers_	

	GitLa	ab)	
noaa.gov/john.krasting/OBGC-diagnostics/activity		C Q Search	☆ 自 ♥ ♣ 余
■ John Krasting / OBGC-diagnostics Project Ac	tivity Repository Pipelines Graphs Issues	s o Merge Requests o Wiki	This project Search Q Sign in
Push events Merge events Comments Team			
Maria Pulido-Velosa pushed to branch user/mfp/mage 2675a2ef- Updated notebooks with Pre_ind DIC compari	nta at John Krasting / OBGC-diagnostics sons		8 days ago
Maria Pulido-Velosa pushed to branch user/mfp/mage 7a2dc13e · Makefile updated with all Model vs Model con	nta at John Krasting / OBGC-diagnostics nparisons and its respce		8 days ago
Keira Norford pushed to branch user/kbn/chlorophyll 4c56beae · 2D Version of regrid2Model.py	at John Krasting / OBGC-diagnostics		8 days ago
Maria Pulido-Velosa pushed to branch user/mfp/mage elce23ea · Updated .gitignore to ignore *.nc files	nta at John Krasting / OBGC-diagnostics		8 days ago
Maria Pulido-Velosa pushed to branch user/mfp/mage 63944fe4 · Zonal P bias script	nta at John Krasting / OBGC-diagnostics		8 days ago
Maria Pulido-Velosa pushed to branch user/mfp/mage 06654e01 · Mask edits for GLODAP Alk	nta at John Krasting / OBGC-diagnostics		8 days ago
Maria Pulido-Velosa pushed to branch user/mfp/mage 0f7da413 · Merge branch 'user/mfp/magenta' of gitlab.gf ffbe9ba1 · fixed masks and sio4 and 1 more commits. Compare 01b304fa0f7da413	nta at John Krasting / OBGC-diagnostics di.noaa.gov:john.krasti		9 days ago
John Krasting pushed to branch user/mfp/magenta at 01b304fa - Added masking for GLODAP TCO2 to correct de	John Krasting / OBGC-diagnostics epth-average plots		9 days ago
John Krasting pushed to branch user/mfp/magenta at 4f5fbbd9 · Masking changes for obsVar and v10 (DIC GLO	John Krasting / OBGC-diagnostics DAP)		9 days ago
John Krasting pushed to branch user/mfp/magenta at Bab815aa · Edits to Makefile for model-model compariso	John Krasting / OBGC-diagnostics n script		9 days ago
Maria Pulido-Velosa pushed to branch user/mfp/mage dad3db44 · zonal averages update	nta at John Krasting / OBGC-diagnostics		9 days ago
Maria Pulido-Velosa pushed to branch user/mfp/mage 10680456 - update Makefile	nta at John Krasting / OBGC-diagnostics		9 days ago
Activity - John Krasting			

Methods

....

Project objective # 2

Application of the diagnostic tool

Use the diagnostic tool created to:

Understand the changes to the biogeochemical fields under a climate change scenario relative to how much the model drifts.

-To obtain 1860 initial conditions, biogeochemical tracers were initialized from World Ocean Atlas observations for NO3,PO4,SIO4,O2 and the Global Data Analysis project for DIC and Alkalinity.

What is A X (climate change response) relative to Y (drift) in each of the biogeochemical fields?

X (Clim. change) = 2081-2100 - p.i control

/Y (drift) = 1861-1880 - observations

 if drift is larger than the climate change response, it makes it harder to interpret results of climate change experiments.

Phosphate Global Zonal Average vs. depth

DRIFT

Drift: rms=0.189 Climate change response: rms= 0.049

Drift > clim. change response for PO4, NO3, SIO4, O2 and Alkalinity

Dissolved Inorganic Carbon Zonal Average vs. depth

CLIMATE CHANGE RESPONSE

DRIFT

Global Zonal Avearge DIC max=2452.1 mean=2339 sd=53.062 min=2015.5 A: DIC Topaz 2081-2100 [µmol/L] ms=2339.6 -200 2440 -400 2350 -600 Έ -8002260 -1000 2170 -2000 -3000 2080 -4000 1990 -50001900 max=2454.5 mean=2306.4 sd=81.036 min=1918.4 B: DIC Control 381-400 [µmol/L] ms=2307.8 -200 2440 -400 2350 -600 Έ -800 2260 -10002170 -2000 2080 -3000 -4000 1990 -5000 1900 mean=32.586 sd=46.507 max=243.55 min=-3.1488 A - B ms=56.787 200 170 140 -200 -400 110 -600 80 50 20 -800 -1000-20 -2000 -50 -80 -3000 -110 -140 -170 -4000-200 -5000 -50 0 50 Latitude [°N]

Drift: rms=37.451 Climate change response: rms= 56.787

Clim. change response > Drift

Temperature Global Zonal Average vs Depth

DRIFT

Drift: rms=1.2467 Climate change response: rms=0.638

Drift > Climate Change Response

Normalized RMS					
Variable	Drift (Model vs. Obs)	Climate Change Response (RCP8.5 vs. Control)			
PO4	0.09	0.02			
NO3	0.08	0.02			
SIO4	0.19	0.05			
02	0.11	0.05			
DIC	0.017	0.025			
Alkalinity	0.009	0.003			
Temperature	0.5	0.18			

Climate Change ise

Climate Change Response > Drift

 $\left(\sqrt{\sum_{i}^{N}(X_{model_{i}}-X_{reference_{i}})^{2}}\right)/N$ Normalized RMS = $\bar{X}_{reference}$

Conclusions

Over the course of the model spin up, the model has drifted and changed more than the climate change response

For a higher resolution model (CM4) that is more computationally expensive, it would be beneficial to reduce the spin-up time in order to minimize the drift and bias.

As strategies emerge to shorten the spin up time of the coupled model, a useful next question would be:

At what time in the spin up does the drift equal the climate change response for the biogeochemical fields in other versions of GFDL ESMs?

Outstanding Issues

- Further validate horizontal and vertical regridding
 - Regridding in the Arctic seems sensitive to model resolution
 - Tried different regridding tools

PO₄ - MOM6 0.25 degree GFDL FMS Horiz Interp

PO₄ - MOM4p1 1 degree GFDL FMS Horiz Interp

PO₄ - MOM4p1 1 degree Earth System Modeling Framework (ESMF) *(bilinear conservative)*

- Uncovered bug in the MIDAS implementation of ALE
 - Piecewise-linear (plm) remapping fails on MOM4p1 output
 - Only piecewise-constant (pcm) remapping was successful

Next Steps

Include more biogeochemical fields

When ESM4 is ready:

- Regrid WOA nutrients to new 0.5 degree grid
- Double-check variable names
- Integrate Makefile into the workflow

Scripts are GFDL specific but eventually should be generalized (i.e. other CMIP models)

Acknowledgments:

• John Krasting

 Jasmin John, John Dunne, Charles Stock, Alistair Adcroft, and everyone in B group

• Matt Harrison

Supplemental Materials

Si04

Global zonal-average silicate bias [µmol/L] max=173.22 min=0.68171 mean=88.215 sd=35.656 ms=95.149 A: SiO4 Topaz 1861-1880 [µmol/L] 210 -200 180 -400 -600 150 Elevation [m] -800 120 -100090 -2000 -3000 60 -4000 30 -5000 0 max=210.34 mean=89.863 sd=44.153 min=1.9028 B: SiO4 WOA'13 [µmol/L] ms=100.12 210 -200 180 -400 -600 150 Elevation [m] -800 120 -100090 -2000 -3000 60 -4000 30 -5000 mean=-1.6473 sd=16.999 ms=17.079 max=51.606 min=-40.454 A - B 0 39.2 -200 33.2 27.2 21.2 -400 -600 15.2 Elevation [m] 9.2 -800 3.2 -1000 0.0 - 0.0 - -3.2 - -9.2 - -15.2 - 21.2 - 27.2 - 33.2 -2000 -3000 -4000 -39.2 -5000 -50 50 0 Latitude [°N]

10

0

0.95

0.75

0.55

0.35

0.15

0.00

-0.15

-0.35

-0.55

-0.75

-0.95

Alkalinity

Differences between start and end of the historical run

Phosphate Drift: 1861-1880 & 1981-2000 vs. WOA

Phosphate Drift: 1861-1880 vs WOA

Phosphate Drift: 1981-2000 vs WOA

PO4 Climate change Scenario: 1981-2000 vs Control

